

SIDDARTHA INSTITUTE OF SCIENCE AND TECHNOLOGY:: PUTTUR (AUTONOMOUS) Siddharth Nagar, Narayanavanam Road – 517583 <u>OUESTION BANK (DESCRIPTIVE)</u>

Subject with Code: BIG DATA ANALYTICS(19CS0523)

Regulation: R19

Course & Branch: B.Tech - CSE Year & Sem: III-B.Tech & II-Sem

Discuss in detail about History of Hadoop? [L2][CO1] [12M] 1 2 Examine the different types of digital data with examples? [L4][CO1] [6M] a) Discuss Big Data in terms of three dimensions, volume, variety and velocity. [L2][CO1] [6M] b) 3 Establish the evolution of Hadoop ecosystem with neat diagram. [L3][CO2] [12M] Explain the difference between structure, unstructured and semi-structure data [L4][CO1] 4 [12M] with an examples. 5 List the Top challenges facing big data. [L1][CO1] [6M] a) What is the Significance of big data analytics b) [L1][CO1] [6M] Distinguish between Analysis of data through Unix tools and Hadoop [L4][CO5] 6 [12M] Ecosystem 7 What is big data analytics? Identify the Classification of Analytics [L3][CO1] [6M] a) Illustrate in detail about Hadoop streaming [L2][CO2] b) [6M] 8 What is Big Sheets? What can be done with big sheets? [L1][CO6] [6M] a) Explain in detail about Infosphere Big Insights ? [L2][CO6] b) [6M] 9 Discriminate the Big Data in Healthcare, Trasportation & Medicine. [L5][CO1] [6M] a) b) Why business are using big data for competitive advantage? [L4][CO1] [6M] How to implement IBM Big Data Strategy? 10 [L2][CO1] [6M] a) Generalize the list of tools related to Hadoop. [L6][CO2] b) [6M]

UNIT –I Introduction To Big Data And Hadoop

1		Illustrate the HDFS concepts.	[L3][CO2]	[12M]
2		What are the advantages of Hadoop? Explain Hadoop Architecture and its Components with proper diagram	[L3][CO2]	[12M]
3		Explain the block, name node and data node in Hadoop file system	[L2][CO3]	[12M]
4		Determine the basic commands in Hadoop command line interface.	[L3][CO5]	[12M]
5	a)	What is an interface? Establish the Hadoop system interfaces	[L3][CO2]	[6M]
	b)	Discuss about the Hadoop Archives and its Limitations	[L2][CO2]	[6M]
6		Describe the File read and File write operations in HDFS	[L1][CO5]	[12M]
7	a)	Discuss about the data ingest operation using sqoop and flume	[L2][CO2]	[6M]
	b)	Differentiate the compression and serialization operation in Hadoop I/O.	[L4][CO2]	[6M]
8		Elaborate the AVRO file format with a diagram	[L6][CO3]	[12M]
9	a)	What is data serialization?	[L3][CO3]	[4M]
	b)	Demonstrate the File Based Data structures.	[L2][CO2]	[8M]
10	a)	Analyze the features of Apache Hadoop.	[L4][CO6]	[6M]
	b)	How does Hadoop work?	[L2][CO2]	[6M]

UNIT –II HDFS(Hadoop Distributed File System)

UNIT –III

Map Reduce

1		Examine the Anatomy of a MapReduce Job Run.	[L4][CO4]	[12M]
2		Construct the Classic MapReduce Job Run with a neat diagram.	[L6][CO5]	[12M]
3		Estimate the Significance of YARN over Classic MapReduce Job Run.	[L5][CO3]	[12M]
4	a)	What are the different types of failures in Classic MapReduce	[L1][CO1]	[6M]
	b)	What are the different types of failures in YARN	[L1][CO1]	[6M]
5	a)	Examine the different types of Job Scheduling process in Map	[L3][CO4]	[6M]
		Reduce.		
	b)	Describe the Default MapReduce Job.	[L3][CO4]	[6M]
6		Describe the Shuffle and Sort operations in Map side and Reduce side	[L1][CO3]	[12M]
7	a)	What are the Properties in Task Execution Environment.	[L1][CO4]	[6M]
-	b)	Discuss about Speculative Execution and its Properties.	[L2][CO4]	[6M]
8		Categorize the different types of input formats in MapReduce.	[L4][CO2]	[12M]
9		Examine the different types of output formats in MapReduce.	[L3][CO2]	[12M]
10		Contrast the below features in MapReduce.	[L4][CO3]	[12M]
		a) Counters b) Sorting c) Joins		

R19

1	a)	Illustrate the concept of grunt	[L3][CO2]	[5M]
	b)	Why Do We Need Apache Pig? Identify the features of PIG.	[L4][CO2]	[7M]
2		What is Pig? How to Install and execute PIG on Hadoop Cluster	[L2][CO5]	[12M]
3	a)	Compare the PIG with Databases with an Example	[L5][CO3]	[6M]
	b)	Evaluate the Expressions and types in Pig Latin.	[L4][CO4]	[6M]
4		Examine the different execution modes available in Pig	[L3][CO4]	[12M]
5		Construct User Define Functions in Pig Latin.	[L6][CO5]	[12M]
6	a)	Explain about Arithmetic Operators in Pig Latin .	[L2][CO3]	[6M]
	b)	Find the Grouping and Joining Data in Pig Latin.	[L3][CO3]	[6M]
7		Examine the Relational Operators in Pig Latin .	[L4][CO2]	[12M]
8		Develop the Schemas and Functions in Pig Latin	[L3][CO5]	[12M]
9	a)	Explain about the data types in Pig Latin.	[L2][CO2]	[6M]
	b)	Develop a program to calculate the maximum recorded temperature by year for	[L6][CO5]	[6M]
		the weather dataset in Pig Latin.		
10	a)	Discriminate the Structures, Statements in Pig Latin	[L4][CO1]	[6M]
	b)	Evaluate Data Processing Operators in Pig Latin.	[L5][CO4]	[6M]

UNIT –V Hive, Hbase, Big SQL

1		Illustrate Hive table with example.	[L3][CO5]	[12M]
2		Discuss about Hive shell command line interface.	[L2][CO5]	[12M]
3	a)	Draw a neat sketch of Hive architecture.	[L3][CO2]	[4M]
	b)	Explain about components of Hive architecture.	[L2][CO2]	[8M]
4	a)	Deduce the various services offered by Hive.	[L4][CO4]	[6M]
	b)	Examine the Characteristics of HBase	[L4][C01]	[6M]
5	a)	Infer the advantages of Hive over traditional databases?	[L2][CO5]	[6M]
	b)	What are the operators and functions in HIVE?	[L1][CO2]	[6M]
6	a)	Appraise about Hive query language?	[L4][CO5]	[6M]
	b)	Review Metastore in Hive?	[L2][CO5]	[6M]
7		Differentiate Hbase over RDBMS.	[L4][C01]	[12M]
8		Explain with a neat diagram the architecture of Hbase.	[L2][CO2]	[12M]
9	a)	Categorize the joins in HiveQL	[L4][CO5]	[6M]
	b)	Report the Implementation of queries on sorting and aggregation of data in Hive	[L6][CO3]	[6M]
10	a)	Explain about IBM Big SQL?	[L2][CO6]	[6M]
	b)	Assess how HBase is implemented at Streamy.com	[L4][CO6]	[6M]

Prepared by: Mr.R.Purushothaman, Associate Professor, CSE SISTK.